

NHS Training for AHP Support Workers

Contents

Workbook 12 The cardiovascular system	1
12.1 Aim	3
12.2 Learning outcomes	3
12.3 The cardiovascular system	4
12.4 Names and function of the main blood vessels	6
12.5 The heart	7
12.6 Blood	9
12.7 The lymphatic system	10
12.8 Blood pressure	11
12.9 Coronary artery disease	13
12.10 The cardivascular system workbook completion	16
12.11 The cardivascular system reflection	18

Workbook 12

The cardiovascular system

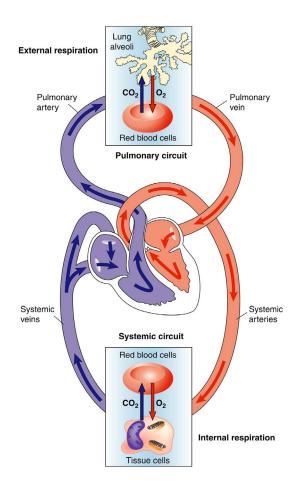
12.1 Aim

The aim of this workbook is to introduce the Healthcare Support Worker (HCSW) to the structure and function of the cardiovascular system.

12.2 Learning outcomes

By the end of this workbook you will be able to:

- Describe the structure and function of the cardiovascular system.
- Describe the components of blood and their function.
- Explain what is meant by blood pressure and describe normal values.
- Explain the function of the coronary arteries and outline the effects of coronary artery disease.
- Explain the purpose of cardiac rehabilitation.


12.3 The cardiovascular system

The cardiovascular system is the heart and the body's blood-transporting network of arteries, veins and smaller vessels. The cardiovascular system is responsible for carrying oxygen and vital nutrients to all parts of the body.

Blood is continuously pumped out from the heart and around the system in two circuits.

- The arterial system (pictured in red) delivers oxygenated blood from the heart to the tissues of the body, where the oxygen is given up and used by the tissues to provide energy and nutrition.
- The venous system (pictured in blue) returns deoxygenated blood to the heart and lungs via the network of veins, and enables removal of harmful waste from the tissues.

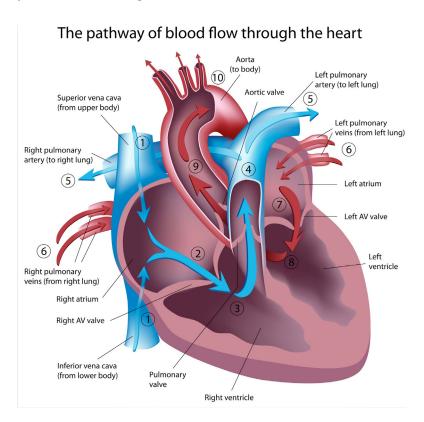
The heart pumps venous blood to the lungs via the pulmonary arteries. Here the blood is pumped into tiny blood vessels called capillaries, which surround little air sacs of the lungs called alveoli. Here, the capillaries allow gases in the blood to be exchanged – oxygen that is inhaled enters the tiny blood vessels and returns to the arterial system for use by the body, and carbon dioxide, the by-product of metabolism is exhaled.

Circulation of blood via the arteries and veins

Describe the function of the cardiovascular system	

12.4 Names and function of the main blood vessels

- **Aorta** This main artery from the heart carries oxygenated blood to **all** body parts except the lungs.
- **Pulmonary veins** These veins transport oxygenated blood from the lungs back to the heart.
- Pulmonary artery The pulmonary artery transports deoxygenated blood to the lungs.
- Inferior vena cava This major vein transports blood from the lower parts of the body back to the heart.
- **Superior vena cava** This major vein transports blood from the upper parts of the body back to the heart.
- **Portal vein** The portal vein transports blood from the digestive system to the liver.


Name the names of major blood vessels and what they do	

12.5 The heart

The heart is a muscular organ which is pyramidal in shape. It lies within the thoracic cavity between the lungs. Deoxygenated blood flows into the right side of the heart, which pumps it to the lungs to pick up oxygen. The deoxygenated blood is returned to the left side of the heart which then pumps it around the body.

Chambers of the heart

The heart is divided into four chambers which are divided by **septa** (tissue wall). These are pictured in the diagram below:

Right atrium de-

oxygenated blood from the body enters this chamber via the inferior and superior vena cava. Blood flows from here into the right ventricle

Right ventricle deoxygenated blood is pumped from here to the lungs via the pulmonary artery

Left atrium oxygenated blood from the lungs returns to the left atrium via the pulmonary veins

Left ventricle oxygenated blood is pumped from the left atrium to the body via the aorta

Valves of the heart

Between each chamber of the heart is a valve that allows one-way flow of blood through the heart, and prevents backflow of blood;

The **mitral** and **tricuspid valves** are sited between the **atria** and **ventricles** on the right and left sides of the heart. The **pulmonary** and **aortic valves** are sited at the exits of the ventricles.

These valves may become diseased and can be surgically replaced by artificial valves.

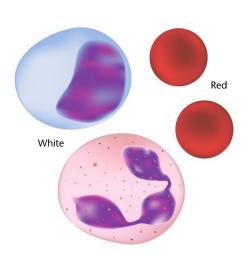
In your own words, describe and name the chambers and valves of the heart and what each does.

eft atrium	Left atrium
Right atrium	Right atrium
eft ventricle	Left ventricle
eft ventricle	Left ventricle
Mitral valve	Mitral valve
ricuspid	Tricuspid
Pulmonary	Pulmonary
Aortic	Aortic

What makes the heart contract?

Unlike skeletal muscle cells that need to be stimulated by nerve impulses to contract, cardiac muscle cells can contract all by themselves.

However, if left to their own devices, cardiac muscle cells in different areas of the heart would beat at different rates. Muscle cells in the ventricles would beat more slowly than those in the atria.


Without some kind of unifying function, the heart would be an inefficient, uncoordinated pump. So, the heart has a tiny group of cells that are responsible for co-ordinating heart rate across the heart. It starts each heartbeat and sets the heartbeat pace for the whole heart.

Damage to these cells can result in a slower heart rate. When this is a problem, an operation is often performed to install an artificial pacemaker, which takes over their role. Some patients in your care may have artificial pacemakers inserted just under the skin on their chest.

12.6 Blood

Blood is composed of tissue cells and a fluid known as plasma, which is mostly water but also contains various substances such as proteins and nutrients. The average volume of blood in an adult human is about 5 litres (11 pints).

There are also several types of blood cell, red cells, white cells and platelets; the most numerous being red blood cells.

Red blood cells

The main role of red blood cells is to carry oxygen from the lungs to the tissues.

The main component of red blood cells is haemoglobin, made up of an iron-bearing red pigment and a protein called globin. They are concave in shape to increase the surface area of the cells to allow them to absorb oxygen from the lungs with maximum efficiency.

Their concave surfaces give them a large surface area for the transportation of haemoglobin.

White blood cells (leucocytes)

The main role of white blood cells is to protect the body against infection from invading organisms.

Platelets

The blood contains millions of tiny platelets. Their purpose is to clump together to seal a damaged or cut blood vessel, forming a clot that prevents blood loss.

Evidence

Name the components of blood and explain their functions		

12.7 The lymphatic system

The lymphatic system comprises of various tissues, vessels and nodes containing white blood cells and is a major part of the immune system. This immune system guards against invasion by disease causing organisms. It is based on specialised white cells called lymphocytes, which respond to infection or cell abnormalities in a number of different ways.

Lymph is a watery fluid that leaks out of blood vessels and accumulates in the spaces between the cells of the body tissues. Lymph is circulated by the action of body muscles, which pushes the fluid through a series of one-way valves. When there is a blockage, for example when lymph nodes have been removed by surgery, patients may suffer from severe swelling of a limb because the lymph fluid can no longer be removed. This type of swelling is common after breast surgery where the lymph nodes under the arm have been removed.

Evidence			
Describe the functions of the lymphatic system			

12.8 Blood pressure

Blood pressure is the force of blood against the walls of the arteries.

Blood pressure is recorded as two numbers:

- systolic pressure (as the heart beats) over
- diastolic pressure (as the heart relaxes between beats)

The measurement is written one above or before the other, with the systolic number on top and the diastolic number on the bottom. For example, a blood pressure measurement of 120/80 mm Hg (millimetres of mercury) is expressed verbally as '120 over 80'.

Normal blood pressure is less than (<) 120 mm Hg systolic and (<) less than 80 mm Hg diastolic.

Low blood pressure (hypotension)

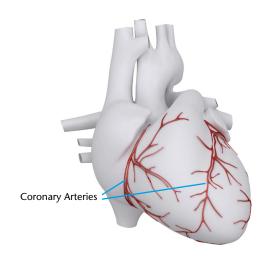
Low blood pressure, also known as hypotension is where the pressure in the arteries is abnormally low. Naturally low blood pressure is unlikely to cause any symptoms but when it drops too low, it can restrict the amount of blood flowing to the brain and other vital organs. This can cause fainting, dizziness and light-headedness.

Low blood pressure can be a result of dehydration, sepsis, trauma, heart failure or a dramatic loss of blood after something like a road accident; in this instance if not treated quickly, oxygen is not delivered to the brain and this is fatal.

High blood pressure (hypertension)

During activity the blood pressure rises to supply blood faster to the hard working muscles. This is caused by the body producing adrenaline, the so-called 'fear, flight or fright' hormone.

Hypertension means high blood pressure. This condition is defined as a resting blood pressure of higher than about 140/90 mm Hg. In the United Kingdom over 10 million people have hypertension.


Hypertension is a problem because it puts great strain on the heart and can also cause tiny blood vessels to break. If this happens in the brain it leads to a stroke. A blood clot forms and deprives a part of the brain of blood. This damages nerve cells and can lead to paralysis or even death.

People with hypertension should alter their lifestyle to take more exercise and eat a balanced diet with a high fruit and vegetable intake, low levels of saturated fat and salt and limited amounts of alcohol. Medication can also help manage this condition.

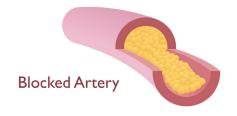
Evidence

Explain what is meant by blood pressure and what happens when it is too high or too low	

Oxygen supply to the heart

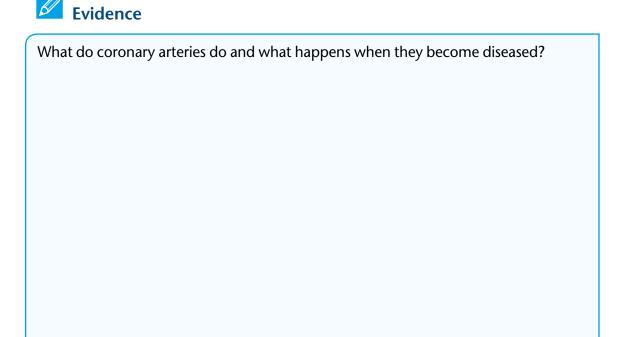
Although the heart is continually filled with blood, this blood doesn't provide the heart with oxygen.

The blood supply that provides oxygen and nutrients to the heart is provided by blood vessels that wrap around the outside of the heart.


These are known as the **coronary arteries** and are pictured left.

12.9 Coronary artery disease

Coronary artery disease is a serious condition affecting the arteries that provide the heart muscle with blood. Here, the arteries become blocked, a condition usually caused by the build up of plaque (deposits of fat-like substances) in a process called atherosclerosis.



The plaque can eventually burst, tear or rupture, creating a 'snag' where a blood clot forms and blocks the artery. The muscle of the heart no longer has sufficient blood supply, resulting in angina or even a heart attack. If the blood supply is cut off for more than a few minutes, muscle cells suffer permanent injury and die. This can kill or disable someone, depending on how much heart muscle is damaged. This is known as heart attack or myocardial infarction.

■ Angina Angina attacks occur during activity when an individual has narrowed arteries. During activity the heart rate increases and muscle cells demand more oxygen. The narrowed arteries cannot supply enough blood to keep up with this demand and this triggers the pain of an angina attack which forces the person to rest. In severe cases, even everyday activities like climbing stairs can trigger an attack.

• Peripheral vascular disease (PVD) The same atherosclerotic plaque that causes coronary heart disease causes peripheral vascular disease. It frequently involves more than one artery. Some of the more commonly affected peripheral areas are the arteries in the legs, arms, kidneys and neck. Some patients can have both coronary artery disease and PVD.

Coronary artery by-pass graft (CABG)

CABG is a surgical procedure for coronary artery disease. During CABG, a surgeon harvests a segment of healthy blood vessel (either an artery or a vein) from another part of the body for example, the leg, and uses it to create a detour or by-pass around the blocked portion of coronary artery.

Depending on how many arteries are blocked, a patient may need one, two, three or more by-passes.

Cardiac rehabilitation and physiotherapy

Following a heart attack or heart surgery, many patients attend cardiac rehabilitation classes. These include exercise and relaxation provided by the physiotherapist and patient information sessions provided by a range of healthcare professionals. Dietary and lifestyle advice is provided that may aid recovery and assist with psychological recovery and lead patients towards improving the health of their heart.

Cardiac rehabilitation programmes may lead to improvement in exercise tolerance, improvement in symptoms of angina pectoris, improvement in blood lipid levels, improvement in psychosocial well-being, improvement in stress reduction and decreased morbidity.

Evidence

What is the purpose of cardiac rehabilitation?
Find out where and when it is carried out in your organisation.

Acknowledgements

NHS Tayside

12.10 The cardivascular system workbook completion

Your supervising physiotherapist will sign your portfolio to indicate that you have completed this workbook successfully.

Objective	Therapist's signature	Date
Name the main blood vessels and what they do		
Describe the structure and function of the heart		
Describe the components of blood and their function		
Describe the function of the lymphatic system		
Explain what is meant by blood pressure and describe normal values		
Explain the function of the coronary arteries and briefly describe the effects of coronary artery disease		
Describe the purpose and the benefits of cardiac rehabilitation		

Support worker (name)
Support worker's signature
Therapist (name)
Therapist's signature
Date

12.11 The cardivascular system reflection

Suggested KSF Dim	ensions: C2, HWB	2, HBW7	
This form should be	placed in the appro	priate section of	your portfolio.

What did you learn from this module?
How has this influenced your work?
Date module completed
Date module completed

